《求二次函数表达式》教学反思(精选10篇)
在办理事务和工作生活中,我们需要很强的教学能力,反思过去,是为了以后。我们该怎么去写反思呢?下面是小编收集整理的《求二次函数表达式》教学反思,希望对大家有所帮助。
《求二次函数表达式》教学反思 篇1求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。下面谈谈本人在教学和复习求函数解析式的具体做法:
一、使学生掌握待定系数法。
待定系数法是初中数学的一种重要解题方法,对于每位学生都必须掌握,并能熟练应用此法来求函数的解析式。待定系数法的基本步骤是:假设所求函数的解析式;把已知的量代入函数关系式,联列方程(组);求出方程(组)的解。
二、让学生明确二次函数两种关系式。
(1)、二次函数一般关系式:y=ax2+bx+c(a≠0)
(2)二次函数顶点式:y=a(x—h)2+k
对于以上这两种函数,要求学生理解关系式,及其性质和图象。
y=ax2+bx+c(a≠0)这是一个二元二次方程,若要求a、b、c,必须知道三个不同的解,然后联立方程组,从而求出a、b、c的值。
三、本节课自己的感想
曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。
《求二次函数表达式》教学反思 篇2教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则。分三步来展开这部分的内容。第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系。第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系。
除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型。教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体。教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。
《求二次函数表达式》教学反思 篇3课后查看了数学课程标准中对二次函数的要求:
1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。
《求二次函数表达式》教学反思 篇4从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的.火花,这是很令人欣慰的。
《求二次函数表达式》教学反思 篇5二次函数是初中阶段的重要知识点,如何让学生学得好,也是困扰我很久的问题。通过画图,在观察图形中总结出图形的性质,对学生来说不是难点。重点和难点在准确灵活地应用性质。但是要想准确应用,熟记图形与性质是前提,于是我重点放在对“性质的记忆”和“对学生高要求上”。
……此处隐藏838个字……本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义。建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程。体验用函数思想去描述、研究变量之间变化规律的意义。
接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
二次函数中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解。学习确定二次函数的一般式,即的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。
在学习了二次函数的知识后,我们尝试运用于解决三个实际问题。问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
《求二次函数表达式》教学反思 篇8我们已经学习过了正、反比例、一次函数的性质和图像,并且学习过了一元二次方程之后,现在要学习二次函数的图像和性质,从课本和教学大纲的体系来看,二次函数是初中数学的重中重,怎样让学生们学好二次函数?掌握好二次函数的图像和性质?让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
为此我们三年级数学组把李进有李校长请到数学组里,李校长说要想教好二次函数开始时一定要让学生们动手画图,画不同情况的图形,通过画图让学生观察、理解、掌握所学的内容,并能总结出各个图像的相同点和不同点,通过李校长指点,我们在学习y=a(x—h)2的图像和性质时,首先让同学们开始画y=x2 、y=(x—2)2 、和y=(x+2)2 。通过对比,观察发现它们之间是通过y=x2向左或向右平移得到y=(x—2)2 、和y=(x+2)2,但是好多同学对着图形还是不理解加2为什么向左平移??这时我想到李校长说的不要害怕费时间,一定要让同学画图,我又让同学画一组,终于同学们在学习二次函数y=a(x—h)2的图象和二次函数y=ax2的图象的关系时,解决了向左或向右平移引出了加减问题,解决了学生在此容易混淆的难点,让学生结合图象十分明确地看到在x后面如果是加上h就是向左平移h个单位,反之就是向右平移h个单位,其次就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。
通过本节课的讲解我感到要想教好数学,一定要让同学动起了,既能引起学生兴趣,又能对前面所学的二次函数的知识加深印象,适应学生的最近发展区,今后要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。
《求二次函数表达式》教学反思 篇9二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的'数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域。在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。在教学中,我主要遇到了这样几个问题:
1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。
2、在细节方面我还有很多的不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的教学中,我会注意这些方面的教学。
3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。
《求二次函数表达式》教学反思 篇10本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。要想灵活应用基础知识解答二次函数问题 ,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:
一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;
二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论, 老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。
数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的能力;设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:
(1)如何使他们愿意学,喜欢学,对数学感兴趣
(2)如何让学生体验成功的喜悦,从而增强自信心
(3)如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑
(4) 培养学生合作学习的互助精神和独立解决问题的能力。
文档为doc格式