首页 > 考生写作 > 说课稿

数学方程意义五年级说课稿

时间:2024-07-18 10:52:34
数学方程意义五年级说课稿

数学方程意义五年级说课稿

在教学工作者实际的教学活动中,就有可能用到说课稿,借助说课稿可以有效提升自己的教学能力。说课稿应该怎么写才好呢?以下是小编整理的数学方程意义五年级说课稿,希望能够帮助到大家。

数学方程意义五年级说课稿1

一、教材分析,学情解析,目标定位

(一)教材分析:

《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

(二)教学目标:

结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

(三)教学重难点

列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

(四)学情分析:

课前我们对学生进行了调研,调研内容主要有三项:

一、求未知数

这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

二、给式子分类,并写出每类的特点。

设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

三、你们在生活中见过与跷跷板类似的物品吗?

设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

(五)教法:

新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

1、用直观的操作和演示,让每位学生理解和归结出结论。

2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

(六)、学法

为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

二、教学过程

教学活动主要安排了五个环节:

1、创设情景,抽象出等量关系,理解等式的性质

等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

活动一:感知平衡,体会等式含义,理解等式性质。

课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

活动二:观察发现,抽象出不同的式子

创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过 ……此处隐藏4019个字……助学生建立分类思想,进一步感受数学与生活之间的密切联系。

3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

下面我就将本节课的教学过程及设计意图向大家做以汇报。

一、谈话导入:

同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】

二、认识并使用天平

教师介绍天平:

这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

教师示范:

下面我们就一起来进行实际应用天平来测量一下。

首先我们来应用一下,检查一下砝码的质量是否准确。

在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

看到天平,你会用等式表示天平两边物体的质量关系吗?

20+30=50

这有一个空的水杯,我们先来测量一下它的重量。

请你估计一下它的重量。我们来试一试。

通过测量,我们得知,水杯的重量是100克。

现在我们缓缓向水杯里倒水,你发现天平怎么样了?

你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

100+X>100

我们继续测量水的质量,同理得出:

100+X>200

100+X<300

100+X=250

这几个算式都以板书形式呈现。

【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】

三、认识方程

1、根据天平写算式并分类

刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

【《20xx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

2、交流汇报:

学生边说,教师边板书:

等式 不等式

含有未知数 3x=180 50+2x>180

100+x=50x3 80<2x

不含未知数 50x2=100 100+20<100+30

根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】

四、应用概念

同学们,根据你对方程的理解,你能自己写出几个方程吗?

判断,他们写得都对吗?

黑板上刚才我们写得这些算式,有方程吗?

【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】

五、方程产生的文化背景

早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

六、拓展延伸

在拓展延伸中,我设计了这样几个题目:

1、 根据线段图写方程

2、 根据数量关系写方程

3、 判断是否是方程

4、 方程与等式的关系

七、作业:

利用课余小组时间用天平测量物体的重量。

再想,天平两边可以如何添加,能使天平继续保持平衡呢?

【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】

《数学方程意义五年级说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式